
1
GETT ING STARTED WITH

DEBUGGING

The first step in the debugging process is writing buggy
code. We’ll start there, but then we’ll quickly move on
to what comes next: resolving bugs. We’ll discuss the
wide variety of errors Python coders commonly en-
counter, including errors that Python won’t catch. We’ll
talk about how to find the locations of bugs, how to
read traceback messages, and how to write code that
handles bugs. Finally, we’ll discuss the mindset that all
good debuggers need to have: beginning with the end
in mind. Let’s get started!

Resolving a Bug

We’ll start with code that’s not buggy. The following code defines a list and
prints out an element of the list:

fibonacci = [1,1,2,3,5,8,13,21]

print(fibonacci[5])

Our list, fibonacci, contains the first eight numbers in the Fibonacci sequence,
a sequence where each number is found by taking the sum of the previous
two numbers. We then printed out the element with index 5.

You should see an output of 8. So far, there are no bugs—–just simple
Python code that runs smoothly.

Next, let’s introduce a bug into our code. Suppose that our intention is
to find a Fibonacci number larger than 8, so we attempt to access an element
of fibonacci with a higher index than the one we accessed before:

fibonacci = [1,1,2,3,5,8,13,21]

print(fibonacci[10])

Listing 1-1: Buggy code

We tried to print the element of our fibonacci list with index 10. But
there’s a problem: the fibonacci list only has eight elements; there is no el-
ement with index 10. If you save these two lines as a Python script called
ch1.py, and then run the script, you should get the following output:

Traceback (most recent call last):

File "ch1.py", line 2, in <module>

print(fibonacci[10])

~~~~~~~~~^^^^

IndexError: list index out of range

Listing 1-2: Traceback output

This message is called a traceback, and we will discuss every part of it
later in the chapter. For now, let’s focus on the most important part of every
traceback: the last line. You can see that it says IndexError: list index out of range.
This is telling us what we already knew: that the list index we tried to access
(10) was out of the range of the indices that exist in the fibonacci list. We
tried to access something that didn’t exist, and this caused Python to output
an error message instead of the larger Fibonacci number we were hoping to
see.

Since this error is related to list indices, it’s called an IndexError. In the
programming world, the common parlance is that this code threw an Index-
Error and that Python caught the error. In Python, there are more than a
dozen main types of errors, and as soon as Python catches any one of them,
it will stop running your code, displaying a traceback message instead.

If you spend enough time writing Python code, you will encounter this
and many other types of errors. You shouldn’t feel like you’re a bad coder
if your code often throws errors. Even the most talented coders write buggy
code every day. As you get familiar with each type of error, you can learn
strategies for dealing with each of them. We will go over many such strate-
gies in this book.

When we write Python code, like the code in Listing 1-1, we almost never
intend for the output to be an error like the IndexError we saw in Listing 1-
2. Anything in code that causes the code’s actual output to be different from
the code’s intended output is called a bug. The process of finding and resolv-

4 Chapter 1



ing bugs is called debugging. For our first debugging task, let’s resolve the
error in Listing 1-1.

There’s a straightforward way to resolve this particular IndexError. Re-
member that our intention Listing 1-1 was to get a Fibonacci number larger
than 8. We got an error because we tried to access a list element that didn’t
exist. We can resolve the error and accomplish our original intention by
making sure that our code accesses a list element that corresponds to a large
Fibonacci number and also a list index that actually exists in the fibonacci

list:

fibonacci = [1,1,2,3,5,8,13,21]

print(fibonacci[7])

Listing 1-3: Accessing a list element that actually exists

Here, we accessed the list element with index 7, the highest index in our
list. When you run this code, you won’t see any traceback message about any
error. Instead, you will see the output 21, the last element in our list. Since
the actual output of our code matches what we want the output to be, the
code is no longer buggy—we have succeeded at debugging.

Commonly Encountered Errors
In the previous section, we encountered a particular type of error called an
IndexError. It’s important to understand IndexErrors, but there are many
other types of error you may encounter when writing Python code. Let’s go
over some of the most common ones.

Syntax Errors
Take a look at the following lines of code:

my_string_1 = "With foes ahead, behind us dread,\nBeneath the sky shall be our bed,"

my_string_2 = 'Until at last our toil be passed,\nOur journey done, our errand sped.'

This code is simple: all it does is define two strings. You should notice
that the first string is enclosed by double quotes ("), while the second string
is enclosed by single quotes ('). This is perfectly fine, since Python allows
both types of quotes to enclose strings.

However, we’ll have a problem if we try to mix these two types of quota-
tion marks. Let’s look at the following line of code that tries to use a single
quote on the left side of a string, and a double quote on the right side of the
string.

my_string_3 = 'We must away! We must away!\nWe ride before the break of day!"

If you save this code to a file called ch1.py, then ask Python to run it,
you’ll get the following traceback message:

File "<stdin>", line 1

Getting Started with Debugging 5



my_string_3 = 'We must away! We must away!\nWe ride before the break of day!"

^

SyntaxError: unterminated string literal (detected at line 1)

Remember that the last line of every traceback message is the most im-
portant line. This line tells us that we have an unterminated string literal.
From Python’s point of view, the string called my_string_3 is “unterminated,”
meaning it never ends. Since the string starts with a single quotation mark,
Python is expecting another single quotation mark to indicate the end of the
string. There is no other single quotation mark, so Python thinks that the
string has never ended, which makes the code impossible to run.

This type of error is called a SyntaxError because it’s a violation of the
rules of Python itself. Syntax errors are special because Python can catch
them before it runs any of your code. Python will throw the error before a
single line of code is run.

Type Errors
Another common error you might encounter is called a TypeError. Let’s
look at some code that will throw this type of error:

fibonacci = [1,1,2,3,5,8,13,21]

print(fibonacci["7"])

Listing 1-4: Attempting to specify a list index with a string

Look at Listing 1-3 and compare it to Listing 1-4. You’ll see that the dif-
ference is very small: in Listing 1-4, we attempted to print fibonacci["7"]]
(where "7" is a string), whereas in Listing 1-3, we attempted to print fibonacci[7]]
(where 7 is an integer). Unfortunately, Python doesn’t allow list indexes to be
specified as strings, so it will throw an error. Here is the traceback message
of the error it throws:

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: list indices must be integers or slices, not str

You can see that this tells us exactly what the problem is: when we specify a
list index, it must have the right data type, and string (str) data types are not
allowed to specify list indices. In general, TypeErrors arise when ...

To resolve the bug, you will have to remove the quotation marks from
the "7" so that it’s interpreted as an integer rather than a string.

Name Errors
Consider the following code that appends even numbers to a list:

even_numbers = []

for n in range(10):

if n % 2==0:

6 Chapter 1



even_numbers.append(n)

print(even_numbers)

You can see that the first line creates an empty list called even_numbers.
The fourth line appends even numbers to this empty list. Finally, the last line
prints our even_numbers list, which now contains several even numbers that we
appended to it.

So far, so good. But look at what happens when we remove the first line
and keep the rest of the code the same:

for n in range(10):

if n % 2==0:

even_numbers.append(n)

print(even_numbers)

Listing 1-5: Referencing a variable before it’s defined

Here, we never bother to create an empty list called even_numbers. So,
when the code gets to (what’s now) the third line, it tries to append a num-
ber to some object called even_numbers. But there is no object called even_numbers.
Our code is trying to append a number to an object that doesn’t exist, and
this throws an error.

If you save this code to a file called ch1.py, then attempt to run it with
Python, you’ll see the following traceback message:

# traceback message

File "<file_name>", line 5, in <module>

even_numbers.append(n)

NameError: name 'even_numbers' is not defined

Python is calling this a NameError, because we referenced a variable
whose name it doesn’t recognize. You’ll get a similar error if you ever try
to reference a variable that hasn’t yet been created. The resolution is simple:
make sure to define every variable before referencing it.

ModuleNotFoundErrors and FileNotFoundErrors
Python scripts usually rely on outside resources to run successfully. For ex-
ample, many Python scripts read external files or data. Most Python scripts
also import packages to increase their capabilities.

There’s nothing wrong with a script relying on outside resources. But
there’s a potential problem: sometimes your script relies on a resource it
can’t find. Consider the following example:

import species

This line tries to import a package called species, which is meant to help
with analysis of exoplanet data. If you have not yet installed the species pack-
age on your computer, then you will see the following traceback message:

Getting Started with Debugging 7



Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ModuleNotFoundError: No module named 'species'

This is aModuleNotFound error, meaning exactly what it says: Python
tried to import the species package (also called the species module), but was
unable to find it. You will have to install the species module if you want to be
able to run this code.

A related type of error is the FileNotFoundError. You will see this type
of error if you try to read a file that doesn’t exist, or exists in a location that
Python can’t find:

import pandas as pd

df = pd.read_csv('exoplanets.csv')

print(df)

Here, we imported the pandas package, and tried to use it to import a
file called exoplanets.csv. If that file doesn’t exist, or if it exists in a place that
Python doesn’t know to search, then Python will output a FileNotFoundError.
You can resolve this error by making sure the file exists, and then making it
clear to Python exactly where it is. For example, the following change adds
the explicit file path of the exoplanets file to our code:

import pandas as pd

df = pd.read_csv('/home/Users/OmarKhayyám/Desktop/exoplanets.csv')

print(df)

If you run this code on your computer, you should adjust it to match the
file name of the file you’re looking for.

Key Errors
So far, many of our Python scripts have used lists. But there are other useful
data types in Python. Let’s look at a way to use a dictionary in Python:

dict = {1: "Hello", 2: "World"}

print("{} {}".format(dict[1],dict[2]))

Here, we defined a dictionary called dict. This Python dictionary has
two keys (the numbers 1 and 2), and two values (the words “Hello” and “World”).
The keys and the values are associated with each other, so when we write
dict[1], Python knows we mean “Hello” (the dictionary value with key 1),
and when we write dict[2], Python knows we mean “World” (the dictio-
nary value with key 2). That’s why this code prints Hello World if you run it in
Python. But if we change it to use an incorrect key, we could have problems:

dict = {1: "Hello", 2: "World"}

print("{} {}".format(dict[0],dict[1]))

Here is the traceback message:

8 Chapter 1



Traceback (most recent call last):

File "<stdin>", line 1, in <module>

KeyError: 0

We have a KeyError, because we tried to access the key 0 when no such
key exists in our dictionary (only 1 and 2 exist as keys). It’s essentially the
same problem we faced when we had an IndexError: we’re trying to access a
part of a data structure that doesn’t exist. We can resolve it the same way we
resolved the IndexError: by making sure that we only try to access keys and
values that actually exist in our dictionary.

Other Types of Errors
The errors listed above are some of the most common errors that Python
coders encounter. But there are more types of errors. You can see more de-
tails about other, less common errors in Appendix A. You can also refer to
the official documentation at https://docs.python.org/3/library/exceptions.html.

Warnings
So far, we’ve seen examples of code that cause Python to throw an error. But
errors are not the only thing that can be thrown and caught. Sometimes,
Python will output warnings: alerts about potential problems in your code
that aren’t serious enough to halt the code’s execution. Warnings and errors
both belong to a class of objects that Python calls exceptions.

Let’s look at an example of code that throws a warning:

fibonacci_seven = 21.0

if fibonacci_seven==21.0:

print('The fibonacci_seven object is equal 21.0')

if fibonacci_seven is 21.0:

print('The fibonacci_seven object is the same object as 21.0')

Listing 1-6: Using “is”, a confusing operator

You can see here that we have two if statements: the first if statement
checks whether fibonacci_seven is equal to the number 21.0; the second if

statement checks whether fibonacci_seven is the same object as the number
21.0.

You may think that asserting that something equals 21.0 (as our first if
statement does) is the same as saying that something is 21.0 (as our second
if statement does). But in fact, Python treats these statements differently.
When it checks for equality (when we specify ==), it checks whether two num-
bers have the same size. But when it checks for identify (when we specify
is), it checks whether they refer to the same object. From Python’s point of
view, “the same object” means that two objects literally reside at the same
location in the computer’s memory.

Getting Started with Debugging 9

https://docs.python.org/3/library/exceptions.html


It’s very possible for two objects to have the same size, but not be the
same object in the computer’s memory. This is exactly what happens in List-
ing 1-6: the fibonacci_seven object is the same size as 21.0, but it’s stored in
the computer’s memory in a different place, so when we ask if one of them
is the other one, Python believes this is False. It’s technically not against the
rules of Python to use is rather than == for comparing numbers, but the
maintainers of Python know that it’s rare for someone to actually want to
use is in this situation, so Python outputs the following warning:

/ch1.py:5: SyntaxWarning: "is" with a literal. Did you mean "=="?

if fibonacci[7] is 21.0:

The Fibonacci number with index 7 is equal to 21

You can learn more about warnings in Appendix B, and also in the offi-
cial Python documentation at https://docs.python.org/3/library/warnings.html.

When your code throws an exception (whether it’s an error or a warn-
ing), it’s very possible that your code is buggy. But many bugs don’t lead to
exceptions being thrown or caught, so debugging is much more than just re-
solving exceptions. In the next section, we’ll go over some exceptions that
Python won’t catch.

Errors that Python Won’t Catch
So far, we’ve encountered situations in which we write code, try to run our
code, and the code throws an error or warning instead of successfully run-
ning. We saw many types of errors, including syntax errors, value errors,
index errors, and more.

There are some situations in which something is wrong with our Python
code, but Python doesn’t output a traceback message or warning. It’s impor-
tant to understand which problems Python won’t catch; they can be be more
subtle, and you will need to catch them yourself.

Infinite Loops
Let’s start with a quick reminder of how while loops work:

n=1

while n<10:

print(n)

n = n+1

Remember that while statements are supposed to evaluate conditions.
Here, while n<10: specifies that the indented code block will be executed
as long as the variable n is less than 10. That condition will be true at first,
since we set n=1. But it might become false later, since the indented code
block contains a command to increase the value of n. As soon as n is greater
than or equal to 10, the while loop will stop executing. This is how while
loops are supposed to work: instead of running forever, they’re supposed
to stop executing after some finite number of iterations.

10 Chapter 1



But some loops never reach a stopping condition. The following code
snippet shows an example of this. Be careful! You may not want to run the
following code snippet at home. If you run it, Python will attempt to con-
tinue running it literally forever. You will only be able to stop it by typing
CTRL-C or CTRL-Z in the window where it’s running, or by turning off
your computer. Proceed with caution:

n=1

while n>0:

print(" disorder-which, repeated, becomes order:")

This code contains an ordinary print() statement, which does nothing
more than output text to the Python console. However, the print() state-
ment is preceded by while n>0:. Unlike while n<10:, this condition will always
be true, since we started with n=1 and we didn’t include any code to change
the value of n. So this while loop will never stop executing, unless some-
thing interrupts it (like if the machine where it’s running is manually shut
down, or if you use the CTRL + C command we mentioned above to interrupt
Python.

When a loop continues running without any chance of reaching an exit
condition, we call this an infinite loop. It’s a dangerous type of error because
it’s not one that Python catches for you. Because it’s one that you’ll notice
only when the code is running—during its runtime—we call it a runtime error.

Semantic Errors
Let’s look at some seemingly straightforward code:

def get_the_seventh_fibonacci_number():

fibonacci = [1,1,2,3,5,8,13,21]

return(fibonacci[2])

Listing 1-7: Exception-free code achieving the wrong goal (a semantic error)

Here, we defined a function called get_the_seventh_fibonacci_number().
You can call this function by running print(get_the_seventh_fibonacci_number())

in Python. You’ll find that it runs smoothly: it outputs 2 quickly and without
outputting any errors or traceback messages. The problem is that the func-
tion’s output, 2, is the third Fibonacci number, whereas the function’s name
indicates that it should be outputting the seventh Fibonacci number instead.

Here, we have syntax that’s correct, and code that runs quickly without
exceptions or problems. The bug here is at a higher level than the syntax or
even the code. The bug here is the contradiction between the intended pur-
pose of the function and what it actually does. Bugs like this, where correct
syntax implements the wrong functionality, are called semantic errors.

Semantic errors could have many causes. One common cause of seman-
tic errors is misunderstanding. Sometimes a project leader has one idea of
what a Python program should do, but fails to communicate it properly to
the developers responsible for writing the actual code. The developers may

Getting Started with Debugging 11



write beautiful code, but if they have misunderstood the leader’s vision, it
will be good code doing the wrong thing—a semantic error.

So far, we’ve seen exceptions that could be resolved easily, just by chang-
ing one number or adding or removing quotation marks. Dealing with se-
mantic errors, by contrast, can be the most challenging part of debugging,
partially because it can be hard to know whether the error even exists at all.
Much of the rest of this book will address how to debug semantic errors.

Finding Bugs
Before you fix a bug, you need to know where the bug is. Many bugs are very
easy to find. For example, consider the following code:

fibonacci = [1,1,2,3,5,8,13,21]

print("Let's get a Fibonacci number.")

print(fibonacci[5])

print("Let's find the next Fibonacci number after the end of our list.")

print(fibonacci[-1]+fibonacci[-2])

print("Let's add 1 to our largest Fibonacci number.")

print(fibonacci[-1]+'1')

print("Let's find the ratio of two of our Fibonacci numbers")

print(fibonacci[-1]/fibonacci[-2])

This code is meant to do some simple calculations related to our fibonacci
list. But when we run it, it throws an error. Take a look at the output:

Let's get a Fibonacci number.

8

Let's find the next Fibonacci number after the end of our list.

34

Let's add 1 to our largest Fibonacci number.

Traceback (most recent call last):

File "ch1.py", line 10, in <module>

print(fibonacci[-1]+'1')

~~~~~~~~~~~~~^~~~

TypeError: unsupported operand type(s) for +: 'int' and 'str'

The first few lines show calculation outputs, just like we wanted. But the
code didn’t finish running: instead, we have a TypeError where we expected
to see calculation outputs. There are a few ways to know exactly which part
of the code caused this error:

File and line number in traceback Notice that the traceback message
mentions File "ch1.py", line 10, meaning that our file called ch1.py con-
tains the problematic code on line 10.

12 Chapter 1

[Code snippet in traceback] In case the file and line number don’t
make the bug’s location obvious enough, the traceback message con-
tains a copy of the offending code: print(fibonacci[-1]+'1') along with
punctuation below (~~~~~~~~~~~~~^~~~) in which the ^ character is sup-
posed to pinpoint exactly the character on the line above that caused the
error.

Printed outputs If you find traceback messages confusing, you can
look at the outputs that were printed out before the beginning of the
traceback message. You can see that the last output before the traceback
message is Let's add 1 to our largest Fibonacci number. Thus we know
that the bug is after the line of code that printed that message. Since
every line of code after the first line is a print() statement, we know that
the buggy line is the line immediately following the last printed line: the
one that reads print(fibonacci[-1]+'1').

Any of these three methods is sufficient to find the location of every
bug we’ve discussed in the chapter so far. But not all professional code is
as simple as the code we’ve introduced here. Let’s go over a couple of bugs
that are more difficult to locate, and how we can use these methods to find
them.

Finding Bugs in Loops
Consider the following code that performs some calculations related to Fi-
bonacci numbers:

import math

calcs = []

phi = (1+math.sqrt(5))/2

phi_conj = (1-math.sqrt(5))/2

n = 1

while n<100:

phi_fib_n = int((phi**n - phi_conj**n)/(phi - phi_conj))

calcs.append(1/(phi_fib_n-int(math.pi*10+3)))

n+=1

This code is meant to perform some calculations related to Fibonacci
numbers. You don’t need to worry about the specifics of the calculations;
we’re only introducing it because it throws an error that we will learn how to
locate. If you save the code to a file and try to run it in Python, you’ll see this
traceback message:

Traceback (most recent call last):

File "ch1.py", line 15, in <module>

calcs.append(1/(phi_fib_n-int(math.pi*10+3)))

~^^~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ZeroDivisionError: division by zero

Getting Started with Debugging 13

Remember that the last line of the traceback is the most important part.
In this case, we have a ZeroDivisionError. Its name indicates that that some-
thing in the code has tried to divide by zero, which is against the rules of
Python (as well as the rules of the universe as we usually understand them).

Resolving this error is simple in theory: we have to make sure that our
code doesn’t divide by zero. Let’s find the bug that’s attempting the illegal
division by zero and resolve it.

The traceback message tells us which line caused the error: it was line
15, the one that tries to append to the calcs object. But the line 15 is part
of a loop, so it’s supposed to be executed nearly 100 times. The traceback
message alone doesn’t make it clear whether the error was thrown on the
first iteration of the loop, or the 99th, or sometime in between, or whether
it would be thrown on every iteration of the loop.

This is a case where the traceback message doesn’t provide enough in-
formation to be completely sure about the cause of the error. But we can
still rely on printed outputs to understand the location (the third method in
our list above). Adding print statements to the code gives us a simple but ef-
fective way to determine exactly which iteration of the loop threw the error:

n = 1

calcs = []

phi = (1+math.sqrt(5))/2

phi_conj = (1-math.sqrt(5))/2

while n<100:

print('Working on calculation number: ' + str(n))

phi_fib_n = int((phi**n - phi_conj**n)/(phi - phi_conj))

calcs.append(1/(phi_fib_n-int(math.pi*10+3)))

n+=1

After adding a print statement, the updated code gives us following out-
put:

Working on calculation number: 1

Working on calculation number: 2

Working on calculation number: 3

Working on calculation number: 4

Working on calculation number: 5

Working on calculation number: 6

Working on calculation number: 7

Working on calculation number: 8

Working on calculation number: 9

Traceback (most recent call last):

File "/home/bradfordtuckfield/ch1temp.py", line 16, in <module>

calcs.append(1/(phi_fib_n-int(math.pi*10+3)))

~^^~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ZeroDivisionError: division by zero

We can see that the traceback message appears just after the code has
told us that it’s working on its ninth calculation. Before completing the loop

14 Chapter 1

and starting the tenth calculation, the code halted and the traceback mes-
sage was output. This indicates that the ninth iteration of the loop was the
one that threw our error and attempted division by zero.

We can prevent this error by ensuring that we don’t ever divide by zero.
Since we’ve determined that division by zero occurs in the ninth iteration of
the loop, one simple solution is to make sure to exit the loop before iteration
number nine:

n = 1

calcs = []

while n<9:

print('Working on calculation number: ' + str(n))

phi_fib_n = int((phi**n - phi_conj**n)/(phi - phi_conj))

calcs.append(1/(phi_fib_n-int(math.pi*10+3)))

n+=1

Notice that we found and resolved the error without ever closely exam-
ining the calculations in the code. In some cases, adding print statements
or other easily readable outputs can enable you to resolve errors even when
you don’t fully understand what caused them. This can be especially useful
if you ever have to debug complex or low-quality code written by a colleague.
You may not need to deeply understand every strange or incorrect calcula-
tion they attempted. Instead, it may be enough to use the same methods we
used here to simply find the bug and remove or avoid it.

Understanding Flow of Execution
Let’s look at another example of a bug that’s hard to find:

def function_eleven(list_c):

list_d = [x*x for x in list_c]

return(list_d)

def function_first(list1):

list2 = function_a([x+1 for x in list1])

return(list2)

def function_a(list7):

list6 = function_eleven([x^2 for x in list7])

return(list6)

def function_12(list_that):

list_this = function_first([x*2 for x in list_that])

return(list_this)

fibonacci_short = [1,1]

final_list = function_12(fibonacci_short)

Getting Started with Debugging 15

print(final_list)

Listing 1-8: Code with a complex flow of execution

This code is confusing for a few reasons. First of all, the functions seem
like they were named based on inconsistent naming schemes. We have four
functions: one is called function_first(), but it’s not written or referenced
first. We also have function_a, which could be first in an alphabetic list, but
the other functions aren’t named alphabetically. The other functions are
numbered eleven and twelve, without any indication of what might have hap-
pened to functions ten, nine, eight, and so on.

The function names aren’t the only thing that’s confusing. If you look
at the last few lines of Listing 1-8, you’ll see that it calls function_12(), passing
our familiar fibonacci list as its argument, and then prints the result. But
function_12() references function_first(), which references function_a() in
turn, which finally references function_eleven(). We have multiple functions
with inconsistent names and unclear purposes referencing each other. Even
though this code is less than 20 lines long, it’s hard to know at first glance
what it does, much less where its bug is.

When you run this code, the list called fibonacci_short will be passed as
an argument function_12, and then subsequently transformed and passed to
other arguments before finally being returned and printed. We can describe
this by saying that the fibonacci_short list “flows” through the code from one
operation to the next. To understand Listing 1-8 completely, we need to un-
derstand the order in which all of its operations are performed, also called
its flow of execution. When code is hard to read and has a complex flow of ex-
ecution, we often colloquially refer to it as spaghetti code.

If you run the code in Listing 1-8, you should find that it prints the fol-
lowing output:

[1, 1]

If you look at the code in Listing 1-8, you might be surprised about this
output. The argument we used in the code is our fibonacci_short list, which
consists of the first two numbers in the Fibonacci sequence (1 and 1). Then,
in function_12(), we multiply every element of the list by 2. Every other func-
tion in Listing 1-8 looks like it should be increasing the size of list elements:
adding 1, multiplying by 2, or squaring them. If every function looks like it
should lead to larger outputs, then how is it that our final output is the same
size as our initial input?

You might find this question hard to answer. There’s no traceback mes-
sage in the output, indicating that Python didn’t catch any exceptions what-
soever - so the syntax is sound. Nevertheless, you suspect that there could
be a semantic error in this code, since you didn’t get the larger outputs you
expected. But with spaghetti code like this, it can be hard to identify exactly
what the semantic error is or where to find it in the code.

One simple way to understand the code better is to do the same thing
we did with a while loop in the previous section: add one or more print state-
ments that indicate exactly what is happening at every point in the flow:

16 Chapter 1

def function_first(list1):

print("Currently executing the beginning of function_first")

print("The function input is: " + str(list1))

print("")

list2 = function_a([x+1 for x in list1])

return(list2)

def function_12(list_that):

print("Currently executing the beginning of function_12")

print("The function input is: " + str(list_that))

print("")

list_this = function_first([x*2 for x in list_that])

return(list_this)

def function_eleven(list_c):

print("Currently executing the beginning of function_eleven")

print("The function input is: " + str(list_c))

print("")

list_d = [x*x for x in list_c]

return(list_d)

def function_a(list7):

print("Currently executing the beginning of function_a")

print("The function input is: " + str(list7))

print("")

list6 = function_eleven([x^2 for x in list7])

return(list6)

fibonacci_short = [1,1]

final_list = function_12(fibonacci_short)

print("The final output is:")

print(final_list)

This is the same code as we saw in Listing 1-8, but with print statements
added at the beginning of every function to tell us the results of all of the
calculations that have been performed at each point in the flow. These print

statements make the problem much easier to locate:

Currently executing the beginning of function_12

The function input is: [1, 1]

Currently executing the beginning of function_first

The function input is: [2, 2]

Currently executing the beginning of function_a

Getting Started with Debugging 17

The function input is: [3, 3]

Currently executing the beginning of function_eleven

The function input is: [1, 1]

The final output is:

[1, 1]

You can see that these print statements make it much easier to follow
the flow of execution. We see that the input to function_12() is [1,1]. We
know that function_12() multiplies inputs by 2, so it’s not surprising to see
that the input to function_first, the next function reached in the flow of
execution, is [2,2]. The input to function_a, in turn, is [3,3]. Just as we ex-
pected, the values are consistently increasing. But next, we see that the input
to function_eleven is [1,1]. We see that between the beginning of function_a
and the beginning of function_eleven, something has gone wrong: function_a
has decreased, rather than increased, the input values it received.

Let’s look more closely at function_a to understand what happened. This
function performs the calculation x^2 with every number that’s passed to
it as input. In many programming languages, x^2 means “x squared,” the
product of x with itself. But remember, in Python, the ^ operator doesn’t
perform squaring; it performs a rarer operation called bitwise or, which can
create outputs that are smaller than its inputs. If the code in Listing 1-8 had
been written by someone who was more accustomed to other programming
languages, it’s very possible that they wrote x^2 when they intended to per-
form squaring (which is denoted by x**2 in Python).

What we have here is a potential semantic error, one whose location
was only discovered by adding print statements to our spaghetti code. Be-
ing able to debug spaghetti code will be a very valuable skill when you work
with teams and need to debug low-quality, poorly documented code written
by someone else.

Reading Traceback Messages
We’ve looked at several traceback messages in this chapter (including List-
ing 1-2). Let’s take a moment to look closely at every element of a traceback
message.

Remember the following buggy code, which was previously introduced
as Listing 1-1:

fibonacci = [1,1,2,3,5,8,13,21]

print(fibonacci[10])

Listing 1-9: Buggy code, again

If you save this code in a file called ch1.py, and then run that file in Python,
you’ll get the following traceback message:

Traceback (most recent call last):

18 Chapter 1

File "ch1.py", line 2, in <module>

print(fibonacci[10])

~~~~~~~~~^^^^

IndexError: list index out of range

Listing 1-10: Traceback output, again

Let’s go over every part of this traceback message. Remember that we
usually start by reading the last line of a traceback message, then work up-
wards:

IndexError: list index out of range The last line of traceback message
tells us the particular error of the buggy code in Listing 1-9.

print(fibonacci[10]) The second-to-last part of the traceback shows the
excerpt from the code that caused the error to be thrown, and it has
helpful characters drawn beneath it (~~~~~~~~~^^^^) that attempt to pin-
point the exact characters that caused the problem.

File "ch1.py", line 2, in <module> This line tells us the file whose code
was running when the error was thrown, and the line in that file that
threw the error.

Traceback (most recent call last): This line announces that we’re read-
ing a traceback message. The (most recent call last) parenthetical tells
us that the code is displayed in reverse chronological order: the most
recently executed line of code that caused the error is shown last, the
second-most-recently executed line of code that caused the error is shown
second-to-last, and so on.

We’ve encountered each of these four elements of traceback messages
previously in this chapter. The only part that we haven’t discussed in detail
is the parenthetical on the first line that says (most recent call last). Let’s
look at some code that will throw an error that makes the meaning of this
parenthetical more clear:

fibonacci = [1,1,2,3,5,8,13,21]

def function_a(some_list):

toreturn = some_list[10]

return(toreturn)

def function_b(some_list):

toreturn = function_a(some_list)

return(toreturn)

def function_c(some_list):

toreturn = function_b(some_list)

return(toreturn)

print(function_c(fibonacci))

Getting Started with Debugging 19



Here we have three functions: function_c() calls function_b(), which calls
function_a(). For its part, function_a() throws the same IndexError we saw at
the beginning of the chapter, caused by trying to access a list element that
doesn’t exist. Let’s look at the traceback message that Python outputs when
we attempt to run this code:

Traceback (most recent call last):

File "/home/bradfordtuckfield/ch1.py", line 15, in <module>

print(function_c(fibonacci))

^^^^^^^^^^^^^^^^^^^^^

File "/home/bradfordtuckfield/ch1.py", line 12, in function_c

toreturn = function_b(some_list)

^^^^^^^^^^^^^^^^^^^^^

File "/home/bradfordtuckfield/ch1.py", line 8, in function_b

toreturn = function_a(some_list)

^^^^^^^^^^^^^^^^^^^^^

File "/home/bradfordtuckfield/ch1.py", line 4, in function_a

toreturn = some_list[10]

~~~~~~~~~^^^

IndexError: list index out of range

Listing 1-11: Traceback output

This traceback message is long, but you can see that it has all of the ele-
ments that were described in the list above. The reason it’s longer is that it
outputs four separate lines of code instead of just one when describing the
location of the error.

You can see that just before the end of the traceback, it shows that
toreturn = some_list[10]

caused the IndexError, on line 4 of the script. But line 4 is only accessed
because of the function call on line 8 (toreturn = function_a(some_list)). So,
if you look further up in the traceback message, you can see that line 8 is
also described in the part describing the location of the error. The function
call on line 8, in turn, only happens because the function it lives in is called
on line 12, which in turn is only accessed because of a function call on line
15. All of these lines are repeated in the traceback message. By reading the
traceback from the end to the beginning, we’re able to “trace back” the flow
of how the error-throwing code was executed—hence the name of a trace-
back message.

In some cases, one single line of code can call another function, which
can call another function in turn, resulting in a chain of a dozen or more
function calls that all have to be listed in a single traceback message. The
following code throws an error whose traceback message shows an example
of this:

import numpy as np

from sklearn.datasets import make_circles

X, y = make_circles()

20 Chapter 1

X_train = X[:70] # split train and test data into 70% and 30%

y_train = y[:70]

X_test = X[70:]

y_test = y[:70]

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(X_train, y_train)

print("Accuracy of KNN test set: {:.2f}".format(knn.score(X_test, y_test)))

You don’t need to worry about the details of this code. It’s intended to
accomplish a simple machine learning task, but a small bug causes an ex-
tremely long traceback message to be output:

Traceback (most recent call last):

File "...runpy.py", line 193, in _run_module_as_main

return _run_code(code, main_globals, None,

File "...runpy.py", line 86, in _run_code

exec(code, run_globals)

File "...pythonFiles\lib\python\debugpy__main__.py", line 45, in <module>

cli.main()

File "...pythonFiles\lib\python\debugpy/..\debugpy\server\cli.py", line 444, in main

run()

File "...\pythonFiles\lib\python\debugpy/..\debugpy\server\cli.py", line 285, in run_file

runpy.run_path(target_as_str, run_name=compat.force_str("__main__"))

File "...runpy.py", line 263, in run_path

return _run_module_code(code, init_globals, run_name,

File "...runpy.py", line 96, in _run_module_code

_run_code(code, mod_globals, init_globals,

File "...runpy.py", line 86, in _run_code

exec(code, run_globals)

File "file_name", line 13, in <module>

print("Accuracy of KNN test set: {:.2f}".format(knn.score(X_test, y_test)))

File "...sklearn\base.py", line 499, in score

return accuracy_score(y, self.predict(X), sample_weight=sample_weight)

File "...sklearn\utils\validation.py", line 73, in inner_f

return f(**kwargs)

File "...sklearn\metrics_classification.py", line 187, in accuracy_score

y_type, y_true, y_pred = _check_targets(y_true, y_pred)

File "...sklearn\metrics_classification.py", line 81, in _check_targets

check_consistent_length(y_true, y_pred)

File "...sklearn\utils\validation.py", line 256, in check_consistent_length

raise ValueError("Found input variables with inconsistent numbers of"

ValueError: Found input variables with inconsistent numbers of samples: [70, 30]

Listing 1-12: Very long traceback output

If you read the last line of this traceback message, you can see that the
code has thrown a ValueError. If you look through the traceback message,

Getting Started with Debugging 21

you can see that there’s a long chain of functions that all call each other.
Many of the functions that are described in the traceback are not part of our
code in Listing 1-12. Instead, they’re functions that were imported, and then
called by our code. Usually, it’s not necessary to look closely at the code of
the packages you import: you should focus on the code that you yourself
have written, and resolve only the bugs there.

Exception Handling
Resolving bugs isn’t the only only task you need to do when debugging. Re-
member that an ounce of prevention is worth a pound of cure. In other
words, it’s better to prevent errors from being thrown in the first place than
it is to merely resolve them. For example, imagine that you’re working on a
Python project with one or more colleagues. You start with some code that
we introduced earlier in the chapter:

fibonacci = [1,1,2,3,5,8,13,21]

print(fibonacci[7])

Listing 1-13: Good code - I hope your colleague doesn’t ruin it

This code outputs 21, the largest Fibonacci number in our fibonacci list,
without throwing any errors. However, suppose that one of your colleagues
edits the code and adds a bug:

fibonacci = [1,1,2,3,5,8,13,21]

fibonacci.pop()

print(fibonacci[7])

Listing 1-14: Changes and additions to code can bring back bugs you thought were dead

The second line, fibonacci.pop(), will remove the last element of the
fibonacci list, so that there is no element of the list with index 7. When you
run the code in Listing 1-14, you’ll get an error that’s almost identical to the
error we got before:

Traceback (most recent call last):

File "ch1.py", line 3, in <module>

print(fibonacci[7])

~~~~~~~~~^^^

IndexError: list index out of range

This is all too common for programmers: you resolve a bug, and then
some change to your code that may seem unrelated to the bug brings the
bug back, or creates some completely new bug. This is especially likely when
you work on a team: two colleagues aren’t familiar enough with each other’s
code, and unknowingly create bugs for each other.

To make sure a bug that you’ve resolved can never come back, you could
try to add some logic to your code so that no matter what change is made,
you’ll never get this same error again. You can do this by checking whether
the index you’re trying to access is in the range of accessible indexes:

22 Chapter 1



fibonacci = [1,1,2,3,5,8,13,21]

index_of_interest=7

if abs(index_of_interest) in range(len(fibonacci)):

print(fibonacci[index_of_interest])

Listing 1-15: Attempting bug-proofing

Here, we do an explicit check to determine whether a particular index
number is in the range of indexes that we can access. Now, changes to the
fibonacci list, or other changes to the code, shouldn’t lead to any IndexEr-
rors. But never underestimate how much damage your colleagues can do
to your code. Suppose that someone on your team leaves the if statement
intact, but adjusts some of the other code in a way that introduces a bug:

fibonacci = [1,1,2,3,5,8,13,21]

fibonacci2 = [1,1,2,3,5,8]

index_of_interest=7

if abs(index_of_interest) in range(len(fibonacci)):

print(fibonacci2[index_of_interest])

When we run this code, we’ll get an IndexError again, because our if
statement is not sufficiently safe as a bug-proofing method.

When code is very complex, it can be difficult to be sure about whether
a particular if statement is sufficient to protect against bugs. In the next sec-
tion, we’ll go over a more robust way to prevent errors from being thrown.

General Exception Handling with Try/Except
One last time, let’s return to the very first example of buggy code that we
looked at at the beginning of the chapter:

fibonacci = [1,1,2,3,5,8,13,21]

print(fibonacci[10])

You’ll recall that we got an IndexError when we ran this code.
Now, let’s use some built-in Python capabilities to prevent errors from

being thrown:

fibonacci = [1,1,2,3,5,8,13,21]

try:

print(fibonacci[10])

except IndexError:

print('You tried to access an index that is out of range.')

Listing 1-16: Exception handling with try/except statements

Here, we’ve added what’s called a try statement. This statement instructs
Python to try everything in the indented block after try:. If the code in that
block throws an error, Python will not output a traceback message or halt
the code. Instead, it will proceed to the except statement just after the try

Getting Started with Debugging 23



statement. If the code in the try block doesn’t throw an error, then the except

block is skipped, and the code’s execution proceeds as normal.
When we run this code, we should get simple output:
You tried to access an index that is out of range.

In this case, Python tried to print the element of the fibonacci list with
index 10. Since there was no such element, we would have gotten an IndexError,
but our try and except statements ensured that Python didn’t halt our code’s
execution or throw an error, printing a custom message instead.

Using try and except statements doesn’t remove or resolve errors. But
it ensures that if errors are thrown, they won’t halt our code, and we’ll be
able to specify helpful responses in our except code blocks. In other words,
try and except statements handle exceptions, and that’s why we refer to them
as exception handling methods. If you have mission-critical Python code that
shouldn’t ever crash, adding exception handling can be very valuable.

Exception Handling with Multiple Types of Errors
In Listing 1-16, you can see that we had a very specific except statement. We
wrote except IndexError:, meaning that the code in the except block will only
be run in case an IndexError is thrown. But except statements are flexible,
and we can specify any type of error we’d like to handle. For example, if we
want to protect against type errors, we can do the following:

fibonacci = [1,1,2,3,5,8,13,21]

try:

fibonacci[1] + 'fibonacci[1]'

except TypeError:

print('You got a type error.')

When we do this, we get simple output:
You got a type error.

We can specify multiple except statements for every try statement, and
we can even specify groups of errors that should be handled identically:

fibonacci = [1,1,2,3,5,8,13,21]

try:

fibonacci[1] + 'fibonacci[1]'

except (RuntimeError, TypeError, NameError):

print('You got a RuntimeError or a TypeError or a NameError.')

except IndexError:

print('you got an index error')

else:

print('you got some other kind of error')

You can see that we have several except statements here. Python will at-
tempt to run the code in the try block. If it encounters either a RunTime Error

or a TypeError or a NameError, then it will execute the code in the first except
block. If it encounters an IndexError, then it will execute the code in the sec-
ond except block. If it encounters any other kind of error, it will execute the

24 Chapter 1



code in the final except block. This allows us to specify different custom re-
sponses to any type of error or exception thrown by the code.

Begin with the End in Mind
Remember our definition of a bug: anything that causes your code’s actual
output to be different from its intended output is a bug. If you have a good
idea of what the intended output of your code is, then it’s often a straightfor-
ward process to make your code perform the intended function.

The problem is that it can actually be quite hard to clearly state the in-
tended purpose of a piece of code. Sometimes, clients or project leaders will
use language like this to describe what they want code to do:

• “Use AI to make more money for us”

• “Write a program that performs all the functions of a bank.”

• “Collect data about our competitors”

These descriptions are reasonable as business goals, but are not detailed
enough for serious programming work. Vague descriptions like these make
semantic errors much more likely. For example, programmers who are told
to work on code for a bank may use a formula for continuous compounding
to calculate accrued interest, but the bank’s owners may want to pay interest
on a monthly, rather than continuous basis. Even if the code is flawless, if it
implements the wrong formulas, it’s buggy.

When debugging, it’s important not only to have strong Python skills,
but also to have the right mindset: a mindset concerned with clearly and
thoroughly documenting the exact intended output for all code, and ensur-
ing that code matches the output only after that documentation is complete.

The importance of beginning with the end in mind is something that
the mathematician Charles Lutwidge Dodgson (pen name Lewis Carroll)
understood when he wrote Alice in Wonderland, in which Alice had this con-
versation related to her direction of travel:

Alice: Would you tell me, please, which way I ought to go from
here?
The Cheshire Cat: That depends a good deal on where you want
to get to.
Alice: I don’t much care where.
The Cheshire Cat: Then it doesn’t much matter which way you go.

In the debugging process, something similar is true: we can resolve er-
rors and adjust code all day, but if we don’t have a clear, agreed-upon idea of
exactly what the code is supposed to do, we’ll never succeed. Like Alice, we
might get somewhere, and we might get code that does something, but it’s
better to make slow progress towards the right thing than quick progress to-
wards the wrong thing. Good debuggers spend a great deal of time thinking
carefully about where they want to go, and exactly what their code is sup-
posed to do before they write a single character of code. Good debuggers
always begin with the end in mind.

Getting Started with Debugging 25



Conclusion
In this chapter, we talked about the idea of a bug. We discussed examples
of common errors, including errors that Python won’t catch. We went over
how to find bugs, how to read traceback messages, and how to handle excep-
tions. In the next chapter, we’ll talk about a particular debugging tool called
pytest, which is extremely common and also happens to be easy to use.

26 Chapter 1


	Part IMi aliquam dictum
	1Getting Started with Debugging
	Resolving a Bug
	Commonly Encountered Errors
	Syntax Errors
	Type Errors
	Name Errors
	ModuleNotFoundErrors and FileNotFoundErrors
	Key Errors
	Other Types of Errors
	Warnings

	Errors that Python Won't Catch
	Infinite Loops
	Semantic Errors

	Finding Bugs
	Finding Bugs in Loops
	Understanding Flow of Execution

	Reading Traceback Messages
	Exception Handling
	General Exception Handling with Try/Except
	Exception Handling with Multiple Types of Errors

	Begin with the End in Mind
	Conclusion



